计算机与现代化 ›› 2010, Vol. 1 ›› Issue (8): 5-7.doi: 10.3969/j.issn.1006-2475.2010.08.002
• 算法设计与分析 • 上一篇 下一篇
孟海东,杨彦侃
收稿日期:
修回日期:
出版日期:
发布日期:
MENG Hai-dong, YANG Yan-kan
Received:
Revised:
Online:
Published:
摘要:
在处理海量数据集时,由于单台计算机的处理能力有限,利用传统的聚类算法难以在有效的时间内获得聚类结果。在基于密度和自适应密度可达聚类算法的基础上,提出一种并行聚类算法。理论和实验结果证明该算法具有接近线性的加速比,能够有效地处理大规模的数据集。
关键词: 并行聚类, 海量数据, 集群
Abstract:
During dealing with massive data sets, a single computer’s power is limited. The traditional clustering algorithms are difficult to obtain the results in the short time. To overcome these problems, a new parallel clustering algorithm is presented according to the analysis of clustering algorithm based on density and adaptive densityreachable. Theoretical analysis and experimental results demonstrate that the algorithm is nearlinear speedup ratio, and can handle the massive data sets effectively.
Key words: parallel clustering, massive data sets, cluster computer
孟海东;杨彦侃. 并行聚类算法的设计与研究[J]. 计算机与现代化, 2010, 1(8): 5-7.
MENG Hai-dong;YANG Yan-kan. Design and Research of Parallel Clustering Algorithm[J]. Computer and Modernization, 2010, 1(8): 5-7.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.c-a-m.org.cn/CN/10.3969/j.issn.1006-2475.2010.08.002
http://www.c-a-m.org.cn/CN/Y2010/V1/I8/5